Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 13(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38668274

RESUMO

We have previously reported that the recombinant African Swine Fever (ASF) vaccine candidate ASFV-G-Δ9GL/ΔUK efficiently induces protection in domestic pigs challenged with the virulent strain Georgia 2010 (ASFV-G). As reported, ASFV-G-Δ9GL/ΔUK induces protection, while intramuscularly (IM), administered at doses of 104 HAD50 or higher, prevents ASF clinical disease in animals infected with the homologous ASFV g strain. Like other recombinant vaccine candidates obtained from ASFV field isolates, ASFV-G-Δ9GL/ΔUK stocks need to be produced in primary cultures of swine macrophages, which constitutes an important limitation in the production of large virus stocks at the industrial level. Here, we describe the development of ASFV-G-Δ9GL/ΔUK stocks using IPKM (Immortalized Porcine Kidney Macrophage) cells, which are derived from swine macrophages. We show that ten successive passages of ASFV-G-Δ9GL/ΔUK in IPKM cells induced small changes in the virus genome. The produced virus, ASFV-G-Δ9GL/ΔUKp10, presented a similar level of replication in swine macrophages cultures to that of the original ASFV-G-Δ9GL/ΔUK (ASFV-G-Δ9GL/ΔUKp0). The protective efficacy of ASFV-G-Δ9GL/ΔUKp10 was evaluated in pigs that were IM-inoculated with either 104 or 106 HAD50 of ASFV-G-Δ9GL/ΔUKp10. While animals inoculated with 104 HAD50 present a partial protection against the experimental infection with the virulent parental virus ASFV-G, those inoculated with 106 HAD50 were completely protected. Therefore, as was just recently reported for another ASF vaccine candidate, ASFV-G-ΔI177L, IPKM cells are an effective alternative to produce stocks for vaccine strains which only grow in swine macrophages.

2.
Viruses ; 16(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543742

RESUMO

The African swine fever virus (ASFV) mutant ASFV-G-∆I177L is a safe and efficacious vaccine which induces protection against the challenge of its parental virus, the Georgia 2010 isolate. Although a genetic DIVA (differentiation between infected and vaccinated animals) assay has been developed for this vaccine, still there is not a serological DIVA test for differentiating between animals vaccinated with ASFV-G-∆I177L and those infected with wild-type viruses. In this report, we describe the development of the ASFV-G-∆I177L mutant having deleted the EP402R gene, which encodes for the viral protein responsible for mediating the hemadsorption of swine erythrocytes. The resulting virus, ASFV-G-∆I177L/∆EP402R, does not have a decreased ability to replicates in swine macrophages when compared with the parental ASFV-G-∆I177L. Domestic pigs intramuscularly (IM) inoculated with either 102 or 106 HAD50 of ASFV-G-∆I177L/∆EP402R remained clinically normal, when compared with a group of mock-vaccinated animals, indicating the absence of residual virulence. Interestingly, an infectious virus could not be detected in the blood samples of the ASFV-G-∆I177L/∆EP402R-inoculated animals in either group at any of the time points tested. Furthermore, while all of the mock-inoculated animals presented a quick and lethal clinical form of ASF after the intramuscular inoculation challenge with 102 HAD50 of highly virulent parental field isolate Georgia 2010 (ASFV-G), all of the ASFV-G-∆I177L/∆EP402R-inoculated animals were protected, remaining clinically normal until the end of the observational period. Most of the ASFV-G-∆I177L/∆EP402R-inoculated pigs developed strong virus-specific antibody responses against viral antigens, reaching maximum levels at 28 days post inoculation. Importantly, all of the sera collected at that time point in the ASFV-G-∆I177L/∆EP402R-inoculated pigs did not react in a direct ELISA coated with the recombinant EP402R protein. Conversely, the EP402R protein was readily recognized by the pool of sera from the animals immunized with recombinant live attenuated vaccine candidates ASFV-G-∆I177L, ASFV-G-∆MGF, or ASFV-G-∆9GL/∆UK. Therefore, ASFV-G-∆I177L/∆EP402R is a novel, safe and efficacious candidate with potential to be used as an antigenically DIVA vaccine.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Vacinas Virais/genética , Sus scrofa , Virulência , Vacinas Sintéticas/genética , Vacinas Atenuadas/genética , Proteínas Recombinantes/genética , Deleção de Genes
3.
Viruses ; 15(10)2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37896841

RESUMO

ASFV vaccine candidate ASFV-G-ΔI177L has been shown to be highly efficacious in inducing protection against challenges with the parental virus, the Georgia 2010 isolate, as well as against field strains isolated from Vietnam. ASFV-G-ΔI177L has been shown to produce protection even when used at low doses (102 HAD50) and shows no residual virulence even when administered at high doses (106 HAD50) or evaluated for a relatively long period of time (6 months). ASFV-G-ΔI177L stocks can only be massively produced in primary cell macrophages. Alternatively, its modified version (ASFV-G-ΔI177L/ΔLVR) grows in a swine-derived cell line (PIPEC), acquiring significant genomic modifications. We present here the development of ASFV-G-ΔI177L stocks in a swine macrophage cell line, IPKM, and its protective efficacy when evaluated in domestic pigs. Successive passing of ASFV-G-ΔI177L in IPKM cells produces minimal genomic changes. Interestingly, a stock of ASFV-G-ΔI177L obtained after 10 passages (ASFV-G-ΔI177Lp10) in IPKM cells showed very small genomic changes when compared with the original virus stock. ASFV-G-ΔI177Lp10 conserves similar growth kinetics in primary swine macrophage cultures than the original parental virus ASFV-G-ΔI177L. Pigs infected with 103 HAD50 of ASFV-G-ΔI177Lp10 developed a strong virus-specific antibody response and were completely protected against the challenge with the parental virulent field isolate Georgia 2010. Therefore, IPKM cells could be an effective alternative for the production of ASFV vaccine stocks for those vaccine candidates exclusively growing in swine macrophages.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Proteínas Virais/genética , Sus scrofa , Macrófagos , Linhagem Celular
4.
Viruses ; 15(10)2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896911

RESUMO

African swine fever virus (ASFV) is a structurally complex, double-stranded DNA virus, which causes African swine fever (ASF), a contagious disease affecting swine. ASF is currently affecting pork production in a large geographical region, including Eurasia and the Caribbean. ASFV has a large genome, which harbors more than 160 genes, but most of these genes' functions have not been experimentally characterized. One of these genes is the O174L gene which has been experimentally shown to function as a small DNA polymerase. Here, we demonstrate that the deletion of the O174L gene from the genome of the virulent strain ASFV Georgia2010 (ASFV-G) does not significantly affect virus replication in vitro or in vivo. A recombinant virus, having deleted the O174L gene, ASFV-G-∆O174L, was developed to study the effect of the O174L protein in replication in swine macrophages cultures in vitro and disease production when inoculated in pigs. The results demonstrated that ASFV-G-∆O174L has similar replication kinetics to parental ASFV-G in swine macrophage cultures. In addition, animals intramuscularly inoculated with 102 HAD50 of ASFV-G-∆O174L presented a clinical form of the disease that is indistinguishable from that induced by the parental virulent strain ASFV-G. All animals developed a lethal disease, being euthanized around day 7 post-infection. Therefore, although O174L is a well-characterized DNA polymerase, its function is apparently not critical for the process of virus replication, both in vitro and in vivo, or for disease production in domestic pigs.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Georgia , Virulência/genética , Deleção de Genes , Sus scrofa , Replicação Viral , DNA Polimerase Dirigida por DNA/genética
5.
Viruses ; 15(8)2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632064

RESUMO

African swine fever (ASF) is a lethal disease of domestic pigs that has been causing outbreaks for over a century in Africa ever since its first discovery in 1921. Since 1957, there have been sporadic outbreaks outside of Africa; however, no outbreak has been as devastating and as far-reaching as the current pandemic that originated from a 2007 outbreak in the Republic of Georgia. Derivatives with a high degree of similarity to the progenitor strain, ASFV-Georgia/2007, have been sequenced from various countries in Europe and Asia. However, the current strains circulating in Africa are largely unknown, and 24 different genotypes have been implicated in different outbreaks. In this study, ASF isolates were collected from samples from swine suspected of dying from ASF on farms in Ghana in early 2022. While previous studies determined that the circulating strains in Ghana were p72 Genotype I, we demonstrate here that the strains circulating in 2022 were derivatives of the p72 Genotype II pandemic strain. Therefore, this study demonstrates for the first time the emergence of Genotype II ASFV in Ghana.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Suínos , Vírus da Febre Suína Africana/genética , Gana/epidemiologia , Febre Suína Africana/epidemiologia , Genótipo , Sus scrofa
6.
Viruses ; 15(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515164

RESUMO

African swine fever (ASF) is a highly contagious disease that affects wild and domestic swine. Currently, the disease is present as a pandemic affecting pork production in Eurasia and the Caribbean region. The etiological agent of ASF is a large, highly complex structural virus (ASFV) harboring a double-stranded genome encoding for more than 160 proteins whose functions, in most cases, have not been experimentally characterized. We show here that deletion of the ASFV gene H240R from the genome of the highly virulent ASFV-Georgia2010 (ASFV-G) isolate partially decreases virus virulence when experimentally inoculated in domestic swine. ASFV-G-∆H240R, a recombinant virus harboring the deletion of the H240R gene, was produced to evaluate the function of the gene in the development of disease in pigs. While all animals intramuscularly inoculated with 102 HAD50 of ASFV-G developed a fatal form of the disease, forty percent of pigs receiving a similar dose of ASFV-G-∆H240R survived the infection, remaining healthy during the 28-day observational period, and the remaining sixty percent developed a protracted but fatal form of the disease compared to that induced by ASFV-G. Additionally, all animals inoculated with ASFV-G-∆H240R presented protracted viremias with reduced virus titers when compared with those found in animals inoculated with ASFV-G. Animals surviving infection with ASFV-G-∆H240R developed a strong virus-specific antibody response and were protected against the challenge of the virulent parental ASFV-G.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/fisiologia , Virulência/genética , Deleção de Genes , Fatores de Virulência/genética
7.
Biologicals ; 83: 101685, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37276750

RESUMO

African swine fever (ASF) is a devastating disease that is currently producing a panzootic significantly impacting the swine industry worldwide. One of the major challenges for advancing the development of ASF vaccines has been the absence of international standards for ASF vaccine purity, potency, safety, and efficacy. To date, the most effective experimental vaccines have been live attenuated strains of viruses. Most of these promising vaccine candidates have been developed by deleting virus genes involved in the process of viral pathogenesis and disease production. This approach requires genomic modification of a parental virus field strain through a process of homologous recombination followed by purification of the recombinant attenuated virus. In this scenario, it is critical to confirm the absence of any parental virulent virus in the final virus stock used for vaccine production. We present here a protocol to establish the purity of virus stock using the live attenuated vaccine candidates ASFV-G-ΔMGF, ASFV-G-Δ9 GLΔUK and ASFV-G-ΔI177L. Procedures described here includes inoculation in susceptible pigs followed by the assessment of the obtained material by differential qPCRs that allows the identification of vaccine virus from ASFV field isolates. This protocol is proposed as a model to ensure that master seed virus stock used for vaccine production does not contain residual parental virulent virus. Procedures described here includes a passage in susceptible pigs followed by the assessment of the obtained material by differential qPCRs that allows the identification of vaccine virus from ASFV field isolates.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Vacinas Atenuadas , Virulência , Proteínas Virais/genética , Vacinas Sintéticas
8.
Pathogens ; 12(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375495

RESUMO

African swine fever (ASF) is an important disease in swine currently producing a pandemic affecting pig production worldwide. Except in Vietnam, where two vaccines were recently approved for controlled use in the field, no vaccine is commercially available for disease control. Up to now, the most effective vaccines developed are based on the use of live-attenuated viruses. Most of these promising vaccine candidates were developed by deleting virus genes involved in the process of viral pathogenesis and disease production. Therefore, these vaccine candidates were developed via the genomic modification of parental virus field strains, producing recombinant viruses and reducing or eliminating their residual virulence. In this scenario, it is critical to confirm the absence of any residual virulence in the vaccine candidate. This report describes the assessment of the presence of residual virulence in the ASFV vaccine candidate ASFV-G-∆I177L in clinical studies conducted under high virus loads and long-term observation periods. The results demonstrated that domestic pigs intramuscularly inoculated with 106 HAD50 of ASFV-G-∆I177L did not show the presence of any clinical sign associated with ASF when observed daily either 90 or 180 days after vaccination. In addition, necropsies conducted at the end of the experiment confirmed the absence of macroscopic internal lesions associated with the disease. These results corroborate the safety of using ASFV-G-∆I177L as a vaccine candidate.

9.
Viruses ; 15(5)2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37243123

RESUMO

The E2 glycoprotein is one of the four structural proteins of the classical swine fever virus (CSFV) particle. E2 has been shown to be involved in many virus functions, including adsorption to host cells, virus virulence and interaction with several host proteins. Using a yeast two-hybrid screen, we have previously shown that the CSFV E2 specifically interacts with swine host protein medium-chain-specific acyl-Coenzyme A dehydrogenase (ACADM), an enzyme that catalyzes the initial step of the mitochondrial fatty acid beta-oxidation pathway. Here, we show that interaction between ACADM and E2 also happens in swine cells infected with CSFV using two different procedures: coimmunoprecipitation and a proximity ligation assay (PLA). In addition, the amino acid residues in E2 critically mediating the interaction with ACADM, M49 and P130 were identified via a reverse yeast two-hybrid screen using an expression library composed of randomly mutated versions of E2. A recombinant CSFV, E2ΔACADMv, harboring substitutions at residues M49I and P130Q in E2, was developed via reverse genomics from the highly virulent Brescia isolate. E2ΔACADMv was shown to have the same kinetics growth in swine primary macrophages and SK6 cell cultures as the parental Brescia strain. Similarly, E2ΔACADMv demonstrated a similar level of virulence when inoculated to domestic pigs as the parental Brescia. Animals intranasally inoculated with 105 TCID50 developed a lethal form of clinical disease with virological and hematological kinetics changes undistinguishable from those produced by the parental strain. Therefore, interaction between CSFV E2 and host ACADM is not critically involved in the processes of virus replication and disease production.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Suínos , Animais , Vírus da Febre Suína Clássica/fisiologia , Saccharomyces cerevisiae/metabolismo , Linhagem Celular , Proteínas do Envelope Viral/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular
10.
J Virol ; 97(6): e0035023, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37212688

RESUMO

African swine fever virus (ASFV) is causing a devastating pandemic in domestic and wild swine in Central Europe to East Asia, resulting in economic losses for the swine industry. The virus contains a large double-stranded DNA genome that contains more than 150 genes, most with no experimentally characterized function. In this study, we evaluate the potential function of the product of ASFV gene B117L, a 115-amino-acid integral membrane protein transcribed at late times during the virus replication cycle and showing no homology to any previously published protein. Hydrophobicity distribution along B117L confirmed the presence of a single transmembrane helix, which, in combination with flanking amphipathic sequences, composes a potential membrane-associated C-terminal domain of ca. 50 amino acids. Ectopic transient cell expression of the B117L gene as a green fluorescent protein (GFP) fusion protein revealed the colocalization with markers of the endoplasmic reticulum (ER). Intracellular localization of various B117L constructs also displayed a pattern for the formation of organized smooth ER (OSER) structures compatible with the presence of a single transmembrane helix with a cytoplasmic carboxy terminus. Using partially overlapping peptides, we further demonstrated that the B117L transmembrane helix has the capacity to establish spores and ion channels in membranes at low pH. Furthermore, our evolutionary analysis showed the high conservation of the transmembrane domain during the evolution of the B117L gene, indicating that the integrity of this domain is preserved by the action of the purifying selection. Collectively our data support a viroporin-like assistant role for the B117L gene-encoded product in ASFV entry. IMPORTANCE ASFV is responsible for an extensively distributed pandemic causing important economic losses in the pork industry in Eurasia. The development of countermeasures is partially limited by the insufficient knowledge regarding the function of the majority of the more than 150 genes present on the virus genome. Here, we provide data regarding the functional experimental evaluation of a previously uncharacterized ASFV gene, B117L. Our data suggest that the B117L gene encodes a small membrane protein that assists in the permeabilization of the ER-derived envelope during ASFV infection.


Assuntos
Vírus da Febre Suína Africana , Permeabilidade da Membrana Celular , Proteínas de Membrana , Proteínas Virais , Internalização do Vírus , Animais , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/metabolismo , Genoma Viral , Concentração de Íons de Hidrogênio , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Permeabilidade da Membrana Celular/genética
11.
Viruses ; 15(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851779

RESUMO

African swine fever virus (ASFV) is the etiological agent of an economically important disease of swine currently affecting large areas of Africa, Eurasia and the Caribbean. ASFV has a complex structure harboring a large dsDNA genome which encodes for more than 160 proteins. One of the proteins, E66L, has recently been involved in arresting gene transcription in the infected host cell. Here, we investigate the role of E66L in the processes of virus replication in swine macrophages and disease production in domestic swine. A recombinant ASFV was developed (ASFV-G-∆E66L), from the virulent parental Georgia 2010 isolate (ASFV-G), harboring the deletion of the E66L gene as a tool to assess the role of the gene. ASFV-G-∆E66L showed that the E66L gene is non-essential for ASFV replication in primary swine macrophages when compared with the parental highly virulent field isolate ASFV-G. Additionally, domestic pigs infected with ASFV-G-∆E66L developed a clinical disease undistinguishable from that produced by ASFV-G. Therefore, E66L is not involved in virus replication or virulence in domestic pigs.


Assuntos
Vírus da Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Virulência , Sus scrofa , Replicação Viral , África
12.
Sci Rep ; 13(1): 1024, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658154

RESUMO

African swine fever is a lethal disease of domestic pigs, geographically expanding as a pandemic, that is affecting countries across Eurasia and severely damaging their swine production industry. After more than 40 years of being absent in the Western hemisphere, in 2020 ASF reappeared in the Dominican Republic and Haiti. The recent outbreak strain in the Dominican Republic has been identified as a genotype II ASFV a derivative of the ASF strain circulating in Asia and Europe. However, to date no full-length genome sequence from either the 1978-1980 Here we report the complete genome sequence of an African swine fever virus (ASFV) (DR-1980) that was previously isolated from blood collected in 1980 from the Dominican Republic at the end of the last outbreak, before culling of all swine on the island of Hispaniola and stored in the Plum Island Animal Disease Center ASFV repository. A contig representing the full-length genome (183,687 base pairs) was de novo assembled into a single contig using both Nanopore and Illumina sequences. DR-1980 was determined to belong to genotype I and, as determined by full genome comparison, a close relative to the sequenced Sardinia viruses that were causing outbreaks at this time.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , República Dominicana/epidemiologia , Sus scrofa , Surtos de Doenças
13.
Viruses ; 16(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38257770

RESUMO

The classical swine fever virus (CSFV) particle consists of three glycoproteins, all of which have been shown to be important proteins involved in many virus functions, including interaction with several host proteins. One of these proteins, E2, has been shown to be directly involved with adsorption to the host cell and important for virus virulence. Using the yeast two-hybrid system, we have previously shown that CSFV E2 specifically interacts with the (DOCK7) dedicator of cytokinesis, a scaffolding protein. In this report, the interaction between E2 and DOCK7 was evaluated. To confirm the yeast two-hybrid results and to determine that DOCK7 interacts in swine cells with E2, we performed co-immunoprecipitation and proximity ligation assay (PLA). After demonstrating the protein interaction in swine cells, E2 amino acid residues Y65, V283, and T149 were determined to be critical for interaction with Dock7 by using a random mutated library of E2 and a reverse yeast two-hybrid approach. That disruption of these three residues with mutations Y65F, V283D, and T149A abrogated the Dock7-E2 protein interaction. These mutations were then introduced into a recombinant CSFV, E2DOCK7v, by a reverse genomics approach using the highly virulent CSFV Brescia isolate as a backbone. E2DOCKv was shown to have similar growth kinetics in swine primary macrophages and SK6 cell cultures to the parental Brescia strain. Similarly, E2DOCK7v demonstrated a similar level of virulence to the parental Brescia when inoculated in domestic pigs. Animals intranasally inoculated with 105 TCID50 developed a lethal form of clinical disease with virological and hematological kinetics changes indistinguishable from that produced by the parental strain. Therefore, interaction between CSFV E2 and host DOCK7 is not critically involved in the process of virus replication and disease production.


Assuntos
Vírus da Febre Suína Clássica , Animais , Aminoácidos , Vírus da Febre Suína Clássica/genética , Suínos , Virulência , Replicação Viral , Técnicas do Sistema de Duplo-Híbrido
14.
Pathogens ; 11(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36558773

RESUMO

African Swine Fever Virus (ASFV) is the causative agent of a highly contagious and lethal vector-borne disease in suids. Recently, a live attenuated virus strain, developed using the currently circulating, virulent Georgia strain (ASFV-G) with a single gene deletion (ASFV-G-ΔI177L), resulted in an effective vaccine. Nevertheless, protective immune response mechanisms induced by this candidate are poorly understood. In this study, Yorkshire crossbred swine intramuscularly vaccinated with 106 50% hemadsorption dose (HAD50) of ASFV-G-ΔI177L or a vehicle control were challenged at 28 days post-inoculation (dpi) with 102 HAD50 of ASFV-G. Analysis of purified peripheral blood mononuclear cells following inoculation and challenge revealed that CD4+, CD8+ and CD4+CD8+ central memory T cells (CD44+CD25-CD27-CD62L+CCR7+, Tcm) decreased significantly by 28 dpi in ASFV-G-ΔI177L-vaccinated swine compared to baseline and time-matched controls. Conversely, CD4+, CD8+ and CD4+CD8+ effector memory T cells (CD44+CD25-CD27-CD62-CCR7-, Tem) increased significantly among ASFV-G-ΔI177L-vaccined swine by 28 dpi compared to baseline and time-matched controls. Additionally, the percentage of natural killer (NK), CD4+ and CD4+CD8+ Tem and CD8+ Tcm and Tem positive for IFNγ increased significantly following inoculation, surpassing that of controls by 28 dpi or earlier. These results suggest that NK and memory T cells play a role in protective immunity and suggest that studying these cell populations may be a surrogate immunity marker in ASF vaccination.

15.
Viruses ; 14(11)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36423157

RESUMO

African swine fever virus (ASFV) produces a lethal disease (ASF) in domestic pigs, which is currently causing a pandemic deteriorating pig production across Eurasia. ASFV is a large and structurally complex virus with a large genome harboring more than 150 genes. ASFV gene QP509L has been shown to encode for an ATP-dependent RNA helicase, which appears to be important for efficient virus replication. Here, we report the development of a recombinant virus, ASFV-G-∆QP509L, having deleted the QP509L gene in the highly virulent field isolate ASFV Georgia 2010 (ASFV-G). It is shown that ASFV-G-∆QP509L replicates in primary swine macrophage cultures as efficiently as the parental virus ASFV-G. In addition, the experimental inoculation of pigs with 102 HAD50 by the intramuscular route produced a slightly protracted but lethal clinical disease when compared to that of animals inoculated with virulent parental ASFV-G. Viremia titers in animals infected with ASFV-G-∆QP509L also had slightly protracted kinetics of presentation. Therefore, ASFV gene QP509L is not critical for the processes of virus replication in swine macrophages, nor is it clearly involved in virus replication and virulence in domestic pigs.


Assuntos
Vírus da Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Virulência , RNA , Georgia , DNA Helicases , Sus scrofa , RNA Helicases , Trifosfato de Adenosina
16.
Microbiol Resour Announc ; 11(12): e0088122, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36409113

RESUMO

Here, we announce the predicted structures of the 193 proteins encoded by African swine fever virus (ASFV) strain Georgia 2007 (ASFV-G). Previously, only the structures of 16 ASFV proteins were elucidated.

17.
Front Vet Sci ; 9: 1028077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387381

RESUMO

The foot-and-mouth disease virus (FMDV) leader proteinase (Lpro) is a papain like protease that cleaves the viral polyprotein and several host factors affecting host cell translation and induction of innate immunity. Introduction of Lpro mutations ablating catalytic activity is not tolerated by the virus, however, complete coding sequence deletion or introduction of targeted amino acid substitutions can render viable progeny. In proof-of-concept studies, we have previously identified and characterized FMDV Lpro mutants that are attenuated in cell culture and in animals, while retaining their capacity for inducing a strong adaptive immunity. By using molecular modeling, we have now identified a His residue (H138), that resides outside the substrate binding and catalytic domain, and is highly conserved across serotypes. Mutation of H138 renders possible FMDV variants of reduced virulence in vitro and in vivo. Kinetics studies showed that FMDV A12-LH138L mutant replicates similarly to FMDV A12-wild type (WT) virus in cells that do not offer immune selective pressure, but attenuation is observed upon infection of primary or low passage porcine epithelial cells. Western blot analysis on protein extracts from these cells, revealed that while processing of translation initiation factor eIF-4G was slightly delayed, no degradation of innate sensors or effector molecules such as NF-κB or G3BP2 was observed, and higher levels of interferon (IFN) and IFN-stimulated genes (ISGs) were induced after infection with A12-LH138L as compared to WT FMDV. Consistent with the results in porcine cells, inoculation of swine with this mutant resulted in a mild, or in some cases, no clinical disease but induction of a strong serological adaptive immune response. These results further support previous evidence that Lpro is a reliable target to derive numerous viable FMDV strains that alone or in combination could be exploited for the development of novel FMD vaccine platforms.

18.
Pathogens ; 11(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36365062

RESUMO

African swine fever virus (ASFV) is currently producing a pandemic affecting a large area of Eurasia, and more recently, the Dominican Republic in the Western Hemisphere. ASFV is a large and structurally complex virus with a large dsDNA genome encoding for more than 150 genes. Live attenuated virus strains can induce protection in domestic swine against disease produced by homologous virulent parental viruses. The roles of the different immune mechanisms induced by the attenuated strains in protection still need to be understood. In particular, the role of ASFV neutralizing antibody in protection still is an important controversial issue to be elucidated. Here we present the development of a novel methodology to detect virus neutralizing antibodies based on the reduction of virus infectivity in a Vero cell adapted ASFV strain. The described method was used to assess levels of virus neutralizing antibodies in domestic swine inoculated with live attenuated ASFV. Results demonstrated a high association between the presence of virus neutralizing antibodies and protection in 84 animals immunized with the recombinant vaccine candidates ASFV-G-Δ9GL/ΔUK or ASFV-G-ΔI177L. To our knowledge, this is the first report demonstrating an association between virus neutralizing antibodies and protection against virulent challenge in such a large number of experimental individuals.

19.
Viruses ; 14(8)2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-36016304

RESUMO

African swine fever virus (ASFV) causes a lethal disease (ASF) in domestic pigs, African swine fever (ASF). ASF is currently producing a pandemic affecting pig production across Eurasia, leading to a shortage of food accessibility. ASFV is structurally complex, harboring a large genome encoding over 150 genes. One of them, EP296R, has been shown to encode for an endonuclease that is necessary for the efficient replication of the virus in swine macrophages, the natural ASFV target cell. Here, we report the development of a recombinant virus, ASFV-G-∆EP296R, harboring the deletion of the EP296R gene from the genome of the highly virulent field isolate ASFV Georgia 2010 (ASFV-G). The recombinant ASFV-G-∆EP296R replicates in primary swine macrophages with similar kinetics as the parental virus ASFV-G. Pigs experimentally infected by the intramuscular route with 102 HAD50 show a slightly protracted, although lethal, presentation of the disease when compared to that of animals inoculated with parental ASFV-G. Viremia titers in the ASFV-G-∆EP296R-infected animals closely followed the kinetics of presentation of clinical disease. Results presented here demonstrate that ASFV-G-∆EP296R is not essential for the processes of ASFV replication in swine macrophages, nor is it radically involved in the process of virus replication or disease production in domestic pigs.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Deleção de Genes , Sus scrofa , Suínos , Virulência/genética , Replicação Viral
20.
Viruses ; 14(8)2022 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-36016456

RESUMO

African swine fever virus (ASFV) is the etiological agent of a swine pandemic affecting a large geographical area extending from Central Europe to Asia. The viral disease was also recently identified in the Dominican Republic and Haiti. ASFV is a structurally complex virus with a large dsDNA genome that encodes for more than 150 genes. Most of these genes have not been experimentally characterized. One of these genes, A151R, encodes for a nonstructural protein and has been reported to be required for the replication of a Vero-cell-adapted ASFV strain. Here, we evaluated the role of the A151R gene in the context of the highly virulent field isolate Georgia 2010 (ASFV-G) during virus replication in swine macrophage cell cultures and during experimental infection in swine. We show that the recombinant virus ASFV-G-∆A151R, harboring a deletion of the A151R gene, replicated in swine macrophage cultures as efficiently as the parental virus ASFV-G, indicating that the A151R gene is not required for ASFV replication in swine macrophages. Interestingly, experimental infection of domestic pigs demonstrated that ASFV-G-∆A151R had a decreased replication rate and produced a drastic reduction in virus virulence. Animals were intramuscularly inoculated with 102 HAD50 of ASFV-G-∆A151R and compared with pigs receiving a similar dose of virulent ASFV-G. All ASFV-G-infected pigs developed an acute lethal form of the disease, while those inoculated with ASFV-G-∆A151R remained healthy during the 28-day observational period, with the exception of only one showing a protracted, but fatal, form of the disease. All ASFV-G-∆A151R surviving animals presented protracted viremias with lower virus titers than those detected in ASFV-G-infected animals. In addition, three out of the four animals surviving the infection with ASFV-G-∆A151R were protected against the challenge with the virulent parental virus ASFV-G. This is the first report indicating that the ASFV A151R gene is involved in virus virulence in domestic swine, suggesting that its deletion may be used to increase the safety profile of currently experimental vaccines.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Deleção de Genes , Sus scrofa , Suínos , Virulência/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA